On Generalized Left Derivations in BCI-Algebras
نویسندگان
چکیده
منابع مشابه
On Generalized Left Derivations in BCI-Algebras
In the present paper, we introduce the notion of generalized left derivation of a BCI-algebra X , construct several examples, and investigate related properties. Also establish some results on regular generalized left derivation. Furthermore, for a generalized left derivation H, the concept of a H-invariant generalized left derivation is introduced, and examples are discussed. Using this concep...
متن کاملOn Symmetric Left Bi-Derivations in BCI-Algebras
The notion of symmetric left bi-derivation of a BCI-algebra X is introduced, and related properties are investigated. Some results on componentwise regular and d-regular symmetric left bi-derivations are obtained. Finally, characterizations of a p-semisimple BCI-algebra are explored, and it is proved that, in a p-semisimple BCI-algebra, F is a symmetric left bi-derivation if and only if it is a...
متن کاملOn t-Derivations of BCI-Algebras
and Applied Analysis 3 Definition 2.2 see 6 . A subset S of a BCI-algebra X is called subalgebra of X if x ∗ y ∈ S whenever x, y ∈ S. For a BCI-algebra X, we denote x ∧ y y ∗ y ∗ x for all x, y ∈ X 6 . For more details we refer to 3, 5, 6 . 3. t-Derivations in a BCI-Algebra/p-Semisimple BCI-Algebra The following definitions introduce the notion of t-derivation for a BCI-algebra. Definition 3.1....
متن کاملLeft Jordan derivations on Banach algebras
In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics & Information Sciences
سال: 2014
ISSN: 1935-0090,2325-0399
DOI: 10.12785/amis/080326